Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int Immunopharmacol ; 115: 109706, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2179732

ABSTRACT

Influenza A viruses (IAV), significant respiratory pathogenic agents, cause seasonal epidemics and global pandemics in intra- and interannual cycles. Despite effective therapies targeting viral proteins, the continuous generation of drug-resistant IAV strains is challenging. Therefore, exploring novel host-specific antiviral treatment strategies is urgently needed. Here, we found that lidocaine, widely used for local anesthesia and sedation, significantly inhibited H1N1(PR8) replication in macrophages. Interestingly, its antiviral effect did not depend on the inhibition of voltage-gated sodium channels (VGSC), the main target of lidocaine for anesthesia. Lidocaine significantly upregulated early IFN-I, interferon α4 (IFNα4) mRNA, and protein levels, but not those of early IFNß in mouse RAW 264.7 cell line and human THP-1 derived macrophages. Knocking out IFNα4 by CRISPR-Cas9 partly reversed lidocaine's inhibition of PR8 replication in macrophages. Mechanistically, lidocaine upregulated IFNα4 by activating TANK-binding kinase 1 (TBK1)-IRF7 and JNK-AP1 signaling pathways. These findings indicate that lidocaine has an incredible antiviral potential by enhancing IFN-I signaling in macrophages. In conclusion, our results indicate the potential auxiliary role of lidocaine for anti-influenza A virus therapy and even for anti-SARS-CoV-2 virus therapy, especially in the absence of a specific medicine.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Interferon Type I , Animals , Humans , Mice , Interferon-alpha , Lidocaine/pharmacology , Antiviral Agents/pharmacology , Signal Transduction , Interferon Type I/pharmacology , Virus Replication , Influenza, Human/drug therapy , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/pharmacology , Interferon Regulatory Factor-7
2.
Purinergic Signal ; 18(1): 13-59, 2022 03.
Article in English | MEDLINE | ID: covidwho-1694363

ABSTRACT

Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.


Subject(s)
Adenosine Triphosphate/metabolism , COVID-19/immunology , Cytokine Release Syndrome/etiology , Inflammation/etiology , Lidocaine/therapeutic use , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic/physiology , Anti-Inflammatory Agents/therapeutic use , Critical Care , Cytokine Release Syndrome/drug therapy , Humans , Inflammation/drug therapy , Infusions, Subcutaneous , Lidocaine/administration & dosage , Lidocaine/pharmacology , Lymph Nodes/immunology , Lymphatic System/immunology , Male , Maximum Tolerated Dose , Middle Aged , Models, Immunological , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic/drug effects , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/physiology , Receptors, Purinergic P2X7/physiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Signal Transduction , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL